Respuesta :

Answer:

[tex]g(x)=x^2+4[/tex] and [tex]f(x)=\frac{8}{x}[/tex]


Step-by-step explanation:

If we want to express [tex]y[/tex] as [tex]y=f(g(x))[/tex], this means that put the function [tex]g(x)[/tex] into [tex]x[/tex] of [tex]f(x)[/tex] to get [tex]y[/tex].

The function [tex]y[/tex] is given as [tex]y=\frac{8}{x^{2}+4}[/tex]

So we need to figure out a function [tex]g(x)[/tex] that we can put into another [tex]f(x)[/tex] to get [tex]y[/tex]

If we let [tex]g(x)=x^2+4[/tex] and [tex]f(x)=\frac{8}{x}[/tex], we can clearly see that putting g(x) into x of f(x) will give us  [tex]\frac{8}{x^2+4}[/tex], which is y.


Hence [tex]g(x)=x^2+4[/tex] and [tex]f(x)=\frac{8}{x}[/tex]

Answer:

[tex]f(x)=x+4[/tex]

[tex]g(x)=\frac{8}{x^2}[/tex]

Step-by-step explanation:

we are given

we are given

[tex]y=\frac{8}{x^2}+4[/tex]

Since, we have to  identify f(x) and g(x)

where g(x) is inner function

Let's assume

[tex]g(x)=\frac{8}{x^2}[/tex]

so, we get

[tex]y=g(x)+4[/tex]

we know that

y=f(g(x))

so, we can also write as

[tex]f(g(x))=g(x)+4[/tex]

now, we can replace g(x) as x

we get

[tex]f(x)=x+4[/tex]

so, we get

[tex]f(x)=x+4[/tex]

[tex]g(x)=\frac{8}{x^2}[/tex]