The number of VHS movie rentals has declined since the year 2000 due to the popularity of DVDs, as the following table shows. Use a graphing calculator to determine the exponential regression equation that best fits the VHS rental data. Let x represent the number of years since 2000.

The number of VHS movie rentals has declined since the year 2000 due to the popularity of DVDs as the following table shows Use a graphing calculator to determi class=

Respuesta :

Answer:


Step-by-step explanation:

Given that x is no of years from 2000

So x takes values as 0,1,2....6

Take the corresponding values in y.

No. x y

1 0 10.5

2 1 7.8

3 2 6.3

4 3 5.1

5 4 4.4

6 5 3.6

7 6 3.1

Mean of x =3

Mean of y = 5.372

r = correlation coeff =-0.9944

So best fit would be

[tex]y=AB^{x} ,where A=9.753 and B=0.8197[/tex]

Hence OPtion C is right answer.

Answer:

The correct option is C.

Step-by-step explanation:

The required formulas are:

1. [tex]\overline{x}=\frac{\sum{x}}{n}[/tex]

2. [tex]\overline{\ln y}=\frac{\sum{\ln y}}{n}[/tex]

3. Tread line is

[tex]y=AB^x[/tex]

Where, [tex]B=e^{\frac{S_{xy}}{S_{xx}}}[/tex] and [tex]A=e^{\overline{\ln y}-\overline{x}\ln B}[/tex]

4. [tex]S_{xx}=\frac{\sum({x-\overline{x}})^2}{n}[/tex]

5. [tex]S_{xy}=\frac{\sum({x-\overline{x}})(\ln y-\overline{\ln y})}{n}[/tex]

The values of x and y are

x  :     0              1              2            3                 4              5          6

y  :     10.5         7.8       6.3          5.1           4.4         3.6        3.1


Using the above formulas,

mean of x=3


mean of [tex]y=5.372635247[/tex]

[tex]A=9.75319281[/tex]

[tex]B=0.819747654[/tex]

Therefore the exponential regression equation of the line is

[tex]y=9.75(0.8197)^x[/tex]

Therefore option C is correct.