Respuesta :
Answer:
f(x) is neither odd nor even function
Step-by-step explanation:
we are given
[tex]f(x)=-3x^4-2x-5[/tex]
Firstly, we will find f(-x)
we can replace x as -x
we get
[tex]f(-x)=-3(-x)^4-2(-x)-5[/tex]
now, we can simplify it
[tex]f(-x)=-3x^4+2x-5[/tex]
we can see that
it is neither equal to f(x) nor -f(x)
we know that
For even:
[tex]f(-x)=f(x)[/tex]
For odd:
[tex]f(-x)=-f(x)[/tex]
so, f(x) is neither odd nor even function
Answer:
The function f(x) is neither even nor odd.
Step-by-step explanation:
The given function is
[tex]f(x) = -3x^4 - 2x - 5[/tex]
A function is called an even function if
[tex]f(-x) = f(x)[/tex]
A function is called an odd function if
[tex]f(-x) = -f(x)[/tex]
Substitute x=-x in the given function, to check whether the function is even, odd, or neither even nor odd.
[tex]f(-x) = -3(-x)^4 - 2(-x) - 5[/tex]
[tex]f(-x) = -3(x)^4 + 2(x) - 5[/tex]
[tex]f(-x) \neq f(x)[/tex]
[tex]f(-x) \neq -f(x)[/tex]
Therefore the function f(x) is neither even nor odd.