Respuesta :
[tex]\bf ~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ (\stackrel{x_1}{-2}~,~\stackrel{y_1}{-5})\qquad (\stackrel{x_2}{x}~,~\stackrel{y_2}{y}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left( \cfrac{x-2}{2}~~,~~\cfrac{y-5}{2} \right)~=~\stackrel{midpoint}{(3,2)}\implies \begin{cases} \cfrac{x-2}{2}=3\\[1em] x-2=6\\ \boxed{x=8}\\[-0.5em] \hrulefill\\ \cfrac{y-5}{2}=2\\[1em] y-5=4\\ \boxed{y=9} \end{cases}[/tex]
Using the midpoint formula, the coordinates of the other endpoint is: D. (8, 9).
What is the Midpoint Formula?
Midpoint formula is given as, M(x, y) = [tex](\frac{x_2 + x_1}{2}, \frac{y_2 + y_1}{2} )[/tex]
Given:
- M(3, 2)
- (-2, -5) = (x1, y1)
- (?, ?) = (x2, y2)
Plug in the values into the midpoint formula:
M(3, 2) = [tex](\frac{x_2 -2}{2}, \frac{y_2 - 5}{2} )[/tex]
3 = (x2 - 2)/2
2(3) = x2 - 2
6 = x2 - 2
6 + 2 = x2
x2 = 8
2 = (y2 - 5)/2
2(2) = y2 - 5
4 = y2 - 5
4 + 5 = y2
y2 = 9
The other endpoint is: D. (8, 9)
Learn more about the midpoint formula on:
https://brainly.com/question/13115533
#SPJ5