Respuesta :

Answer:



B. FALSE


Step-by-step explanation:


A. [tex](8y^2+2)-(4-2y^2)[/tex]



We expand the brackets to get,


[tex]=8y^2+2-4+2y^2[/tex]



Group like terms,


[tex]=8y^2+2y^2+2-4[/tex]


Simplify,



[tex]=10y^2-2[/tex]


TRUE


B. [tex](y^2-7)+(2y+2)[/tex]



Rearrange the terms,


[tex]=y^2+2y-7+2[/tex]


Simplify,


[tex]=y^2+2y-5[/tex]




[tex](y^2-7)+(2y+2)\ne y^2-9[/tex]



FALSE



C


[tex](y^2-7)+(2y^2+3)[/tex]



Group like terms,


[tex]=y^2+2y^2-7+3[/tex]


Simplify,



[tex]=3y^2-4[/tex]



TRUE



D. [tex](y^3-y)-(y^2+4)[/tex]


Expand brackets



[tex]=y^3-y-y^2-4[/tex]


Rewrite in descending powers of y,



[tex]=y^3-y^2-y-4[/tex]




TRUE