Respuesta :

Answer:

[tex]\displaystyle \boxed{\sum_{n=1}^{19} (n^2 - 6n + 9) - \sum_{n=1}^{9} (n^2 - 6n + 9) = \sum_{n=10}^{19} (n-3)^2}.[/tex]

Step-by-step explanation:

We can start by noticing that

[tex]n^2 - 6n + 9 = n^2 - 2 \times 3 \times n + 3^2 = (n-3)^2,[/tex]

so we get:

[tex]\displaystyle \sum_{n=1}^{19} (n^2 - 6n + 9) - \sum_{n=1}^{9} (n^2 - 6n + 9) = \sum_{n=1}^{19} (n-3)^2 - \sum_{n=1}^{9} (n-3)^2.[/tex]

Let [tex]a_n=(n-3)^2[/tex]. We can now write the expression as:

[tex]\displaystyle\sum_{n=1}^{19} a_n - \sum_{n=1}^{9} a_n = (a_1 + a_2 + \dots + a_{19}) - (a_1 + a_2 + \dots + a_9).[/tex]

Since the first 9 terms cancel, we get:

[tex]\displaystyle a_{10} + a_{11} + \dots + a_{19} = \sum_{n=10}^{19}a_n.[/tex]

So we finally get:

[tex]\displaystyle \boxed{\sum_{n=1}^{19} (n^2 - 6n + 9) - \sum_{n=1}^{9} (n^2 - 6n + 9) = \sum_{n=10}^{19} (n-3)^2}.[/tex]