Answer:
CD=14 cm and DE=21 cm
Step-by-step explanation:
Let the rhombus's side be x cm, DN=NF=FM=DM=x xm.
Triangles CDE and FNE are similar, thus,
[tex]\dfrac{CD}{FN}=\dfrac{CE}{FE}=\dfrac{DE}{NE}[/tex]
or
[tex]\dfrac{CD}{x}=\dfrac{8+12}{12}=\dfrac{DE}{DE-x}.[/tex]
Hence,
[tex]CD=\dfrac{5x}{3}[/tex]
and
[tex]20(DE-x)=12DE,\\ \\8DE=20x,\\ \\DE=\dfrac{5x}{2}.[/tex]
Since the perimeter of the triangle CDE is 55 cm, we have that
[tex]\dfrac{5x}{3}+\dfrac{5x}{2}+20=55,\\ \\\dfrac{25x}{6}=35,\\ \\x=\dfrac{6\cdot 35}{25}=8.4.[/tex]
Therefore, CD=14 cm and DE=21 cm