Q1 : Find the inverse of the function.
f(x) = 7x - 1 (5 points)

Q2 : Find the inverse of the function.
f(x) = x3 - 7 (5 points)

Q3 : Find the inverse of the function.
f(x) = 5x3 - 3 (5 points)

Q1 Find the inverse of the function fx 7x 1 5 points Q2 Find the inverse of the function fx x3 7 5 points Q3 Find the inverse of the function fx 5x3 3 5 points class=

Respuesta :

Answer:

1. Option D is correct.

2. Option B is correct.

3. Option B is correct.

Step-by-step explanation:

Inverse function defined as the the function that undergoes the action of the other function.

A function [tex]f^{-1}[/tex] is the inverse of f if whenever y =f(x) and [tex]x =f^{-1}[/tex]

To find the inverse of the function:

Q1.

Given the function:  f(x) = 7x -1

Put y for f(x) and solve for x;

y= 7x -1

Add 1 both sides we get;

y + 1 = 7x

Divide both sides by 7 we get;

[tex]x = \frac{y+1}{7}[/tex]

Put [tex]f^{-1}(y)[/tex] for x;

[tex]f^{-1}(y) = \frac{y+1}{7}[/tex]

Interchange y =x, we have

[tex]f^{-1}(x) = \frac{x+1}{7}[/tex]

Q 2.

Given the function:

[tex]f(x) = x^3 - 7[/tex]

Put y for f(x) and solve for x;

[tex]y = x^3-7[/tex]

Add 7 both sides we get;

[tex]y + 7 =x^3[/tex]

taking cube root both sides we get

[tex]x =\sqrt[3]{y+7}[/tex]

Put [tex]f^{-1}(y)[/tex] for x;

[tex]f^{-1}(y) =\sqrt[3]{y+7}[/tex]

Interchange y =x, we have

[tex]f^{-1}(x) = \sqrt[3]{x+7}[/tex]

Q3 .

Given the function:

[tex]f(x) = 5x^3 - 3[/tex]

Put y for f(x) and solve for x;

[tex]y = 5x^3-3[/tex]

Add 3 both sides we get;

[tex]y + 3 =5x^3[/tex]

Divide both sides by 5 we get;

[tex]x^3 = \frac{y+3}{5}[/tex]

taking cube root both sides we get

[tex]x = \sqrt[3]{\frac{y+3}{5} }[/tex]

Put [tex]f^{-1}(y)[/tex] for x;

[tex]f^{-1}(y) = \sqrt[3]{\frac{y+3}{5} }[/tex]

Interchange y =x, we have

[tex]f^{-1}(x) = \sqrt[3]{\frac{x+3}{5} }[/tex]