A composite function is the combination of two or more functions to create another function.
- The values of f(x) and g(x) for [tex]y = \frac 9{x^2} + 2[/tex] are [tex]f(x) = \frac 9{x} + 2[/tex] and [tex]g(x) = x^2[/tex]
- f(x) and g(x) are inverse functions
Given that:
[tex]y = \frac 9{x^2} + 2[/tex]
Replace [tex]x^2[/tex] with g(x)
[tex]y = \frac 9{g(x)} + 2[/tex]
This means that:
[tex]g(x) = x^2[/tex]
Replace sub function g(x) with x and y, with f(x).
So, we have:
[tex]f(x) = \frac 9{x} + 2[/tex]
Hence, the equation is:
[tex]y = f(g(x))[/tex]
Where:
[tex]f(x) = \frac 9{x} + 2[/tex] and [tex]g(x) = x^2[/tex]
Given that:
[tex]f(x) = 9x + 3[/tex]
[tex]g(x) = \frac{x-3}9[/tex]
f(g(x)) is calculated as follows:
[tex]f(x) = 9x + 3[/tex]
Replace x with g(x)
[tex]f(g(x)) = 9\times g(x) + 3[/tex]
Substitute [tex]g(x) = \frac{x-3}9[/tex]
[tex]f(g(x)) = 9\times \frac{x - 3}{9} + 3[/tex]
[tex]f(g(x)) = x - 3 + 3[/tex]
[tex]f(g(x)) = x[/tex]
Similarly:
[tex]g(x) = \frac{x-3}9[/tex]
Replace x with f(x)
[tex]g(f(x)) = \frac{f(x)-3}9[/tex]
Substitute [tex]f(x) = 9x + 3[/tex]
[tex]g(f(x)) = \frac{9x + 3 - 3}{9}[/tex]
[tex]g(f(x)) = \frac{9x}{9}[/tex]
[tex]g(f(x)) = x[/tex]
Hence:
[tex]f(g(x)) = g(f(x)) = x[/tex]
Read more about composite functions at:
brainly.com/question/8776301