q1 : Find f(x) and g(x) so that the function can be described as y = f(g(x)). (5 points)
y = nine divided by x squared + 2

Q2: Confirm that f and g are inverses by showing that f(g(x)) = x and g(f(x)) = x. (5 points)
f(x) = 9x + 3 and g(x) = Quantity x minus three divided by nine

q1 Find fx and gx so that the function can be described as y fgx 5 points y nine divided by x squared 2 Q2 Confirm that f and g are inverses by showing that fgx class=

Respuesta :

Answer

q1.

Given: [tex]y = \frac{9}{x^2}+2[/tex]

Rewrite this function in the way as;

[tex]y = \frac{9}{g(x)} + 2[/tex]

then;

[tex]g(x) = x^2[/tex] and [tex]f(x) = \frac{9}{x} + 2[/tex]

q2.

Given the function:

[tex]f(x) = 9x+3[/tex] and [tex]g(x) = \frac{x-3}{9}[/tex]

Confirm f and g are inverses by showing f(g(x)) =x and g(f(x)) =x

First show f(g(x)) =x

f(g(x)) = 9(g(x)) + 3

Substitute the function g(x) we have;

[tex]f(g(x)) = 9(\frac{x-3}{9}) + 3[/tex]

or

[tex]f(g(x)) =(x-3) + 3[/tex] = x -3 + 3 = x      

f(g(x)) =x        

Similarly show that:  g(f(x)) =x

[tex]g(f(x)) = \frac{f(x)-3}{9}[/tex]

Substitute the value of function g(x) we have;

[tex]g(f(x)) =\frac{9x+3-3}{9}[/tex]

Simplify:

[tex]g(f(x)) =\frac{9x}{9}[/tex]

[tex]g(f(x)) =x[/tex]       hence proved!

Therefore, f and g are inverse of each other after showing  f(g(x)) =x and g(f(x)) =x






A composite function is the combination of two or more functions to create another function.

  1. The values of f(x) and g(x) for [tex]y = \frac 9{x^2} + 2[/tex] are [tex]f(x) = \frac 9{x} + 2[/tex] and [tex]g(x) = x^2[/tex]
  2. f(x) and g(x) are inverse functions

Given that:

[tex]y = \frac 9{x^2} + 2[/tex]

Replace [tex]x^2[/tex] with g(x)

[tex]y = \frac 9{g(x)} + 2[/tex]

This means that:

[tex]g(x) = x^2[/tex]

Replace sub function g(x) with x and y, with f(x).

So, we have:

[tex]f(x) = \frac 9{x} + 2[/tex]

Hence, the equation is:

[tex]y = f(g(x))[/tex]

Where:

[tex]f(x) = \frac 9{x} + 2[/tex] and [tex]g(x) = x^2[/tex]

Given that:

[tex]f(x) = 9x + 3[/tex]

[tex]g(x) = \frac{x-3}9[/tex]

f(g(x)) is calculated as follows:

[tex]f(x) = 9x + 3[/tex]

Replace x with g(x)

[tex]f(g(x)) = 9\times g(x) + 3[/tex]

Substitute [tex]g(x) = \frac{x-3}9[/tex]

[tex]f(g(x)) = 9\times \frac{x - 3}{9} + 3[/tex]

[tex]f(g(x)) = x - 3 + 3[/tex]

[tex]f(g(x)) = x[/tex]

Similarly:

[tex]g(x) = \frac{x-3}9[/tex]

Replace x with f(x)

[tex]g(f(x)) = \frac{f(x)-3}9[/tex]

Substitute [tex]f(x) = 9x + 3[/tex]

[tex]g(f(x)) = \frac{9x + 3 - 3}{9}[/tex]

[tex]g(f(x)) = \frac{9x}{9}[/tex]

[tex]g(f(x)) = x[/tex]

Hence:

[tex]f(g(x)) = g(f(x)) = x[/tex]

Read more about composite functions at:

brainly.com/question/8776301