Respuesta :

Answer:

Option A is correct.

Solution for the given equation is, [tex]x = 0^{\circ}[/tex]

Step-by-step explanation:

Given that : [tex]2\cos^2x -\cos x -1 =0[/tex]

Let [tex]\cos x =y[/tex]

then our equation become;

[tex]2y^2-y-1= 0[/tex]           .....[1]

A quadratic equation is of the form:

[tex]ax^2+bx+c =0[/tex].....[2] where a, b and c are coefficient and the solution is given by;

[tex]x = \frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

Comparing equation [1] and [2] we get;

a = 2 b = -1 and c =-1

then;

[tex]y = \frac{-(-1)\pm \sqrt{(-1)^2-4(2)(-1)}}{2(2)}[/tex]

Simplify:

[tex]y = \frac{ 1 \pm \sqrt{1+8}}{4}[/tex]

or

[tex]y = \frac{ 1 \pm \sqrt{9}}{4}[/tex]

[tex]y = \frac{ 1 \pm 3}{4}[/tex]

or

[tex]y = \frac{1+3}{4}[/tex] and [tex]y = \frac{1 -3}{4}[/tex]

Simplify:

y = 1 and [tex]y = -\frac{1}{2}[/tex]

Substitute y = cos x we have;

[tex]\cos x = 1[/tex]

⇒[tex]x = 0^{\circ}[/tex]

and

[tex]\cos x = -\frac{1}{2}[/tex]

⇒ [tex]x = 120^{\circ} \text{and} x = 240^{\circ}[/tex]

The solution set:  [tex]\{0^{\circ}, 120^{\circ} , 240^{\circ}\}[/tex]

Therefore, the solution for the given equation  [tex]2\cos^2x -\cos x -1 =0[/tex] is, [tex]0^{\circ}[/tex]





Answer:

The correct answer option is A. 0°.

Step-by-step explanation:

We are given a quadratic equation in cos which is factored in the same way like usual quadratic equation is factored:

[tex] 2cos^2x - cos x - 1 = 0 [/tex]

This can be factorized and can also be written as:

[tex] 2cos^2x - 2cosx + cosx - 1 = 0 [/tex]

or

[tex] 2cos x (cos x - 1) + 1(cos x - 1) = 0[/tex]

[tex] (2cos x + 1) (cos x - 1) = 0 [/tex]

[tex]2xcos+1=0[/tex] or [tex]cos x-1=0[/tex]

[tex]cos x = -\frac{1}{2}[/tex] or [tex]cos x = 1[/tex]

[tex]x = 120[/tex] or [tex]x = 0[/tex]

Therefore, the correct answer option is A. 0°.