An airplane's change in altitude before landing is shown in the table. what equation represents this change in altitude?PLEASE HELP SOON

Answer:
[tex]y =-4000x+39000[/tex]
Step-by-step explanation:
Minutes (m) Altitude(a)
1 35000
2 31000
3 27000
4 23000
Slope : [tex]m =\frac{y_2-y_1}{x_2-x_1}[/tex] ---A
[tex](x_1,y_1)=(1,35000)[/tex]
[tex](x_2,y_2)=(2,31000)[/tex]
Substitute the values in A
[tex]m =\frac{31000-35000}{2-1}[/tex]
[tex]m =-4000[/tex]
[tex](x_1,y_1)=(3,27000)[/tex]
[tex](x_2,y_2)=(4,23000)[/tex]
Substitute the values in A
[tex]m =\frac{23000-27000}{4-3}[/tex]
[tex]m =-4000[/tex]
Since the slopes are same.
Thus the given table represents the linear function.
Now we will use two point slope form top obtain the required equation
[tex]y-y_1 =\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
[tex](x_1,y_1)=(1,35000)[/tex]
[tex](x_2,y_2)=(2,31000)[/tex]
[tex]y-3500 =\frac{31000-35000}{2-1}(x-1)[/tex]
[tex]y-3500 =-4000x+4000[/tex]
[tex]y =-4000x+4000+35000[/tex]
[tex]y =-4000x+39000[/tex]
Thus Option D is correct.
The equation represents this change in altitude is [tex]y =-4000x+39000[/tex]
The equation that represents this change in altitude is [tex]\sigma = -4000m +39000[/tex] and this can be determined by using the point-slope form of the line.
Given :
The data is in the table.
Give that at m = 1 min, [tex]\sigma = 35000[/tex] ft and at m = 2min, [tex]\sigma = 31000[/tex] . Then using the point-slope form of the line which is given by:
[tex]\dfrac{y-y_1}{x-x_1}=\dfrac{y_2-y_1}{x_2-x_1}[/tex] --- (1)
where [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are points on the line.
Now, put the value of [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] in equation (1).
[tex]\dfrac{\sigma-35000}{m-1}=\dfrac{31000-35000}{2-1}[/tex]
[tex]\dfrac{\sigma-35000}{m-1}=\dfrac{-4000}{1}[/tex]
[tex]\sigma-35000={-4000}{(m-1)}[/tex]
[tex]\sigma - 35000=-4000m+4000[/tex]
[tex]\sigma = -4000m +39000[/tex]
The equation that represents this change in altitude is [tex]\sigma = -4000m +39000[/tex] and this can be determined by using the point-slope form of the line.
For more information, refer to the link given below:
https://brainly.com/question/2263981