Respuesta :

Answer:

10i+4j times 3i+4j=

30i+16j

(30,16)

Step-by-step explanation:


Answer:

Option (c) is correct.

The dot product of given vectors [tex]a=10\hat{i}+4\hat{j}[/tex] and [tex]b=3\hat{i}+4\hat{j}[/tex] is 46.

Step-by-step explanation:

Given : The vectors  [tex]a=10\hat{i}+4\hat{j}[/tex] and [tex]b=3\hat{i}+4\hat{j}[/tex]

We have to find the dot product of given vectors a and b

Consider the given vectors [tex]a=10\hat{i}+4\hat{j}[/tex] and [tex]b=3\hat{i}+4\hat{j}[/tex]

[tex]\mathrm{Computing\:dot\:product\:of\:two\:vectors}:\quad \left(x_1,\:\:\ldots ,\:\:x_n\right)\cdot \left(y,\:\:\ldots ,\:\:y_n\right)=\sum _{i=1}^nx_iy_i[/tex]

We have

[tex]\begin{pmatrix}10&4\end{pmatrix}\begin{pmatrix}3&4\end{pmatrix}[/tex]

[tex]=30+16=46[/tex]

Thus, The dot product of given vectors [tex]a=10\hat{i}+4\hat{j}[/tex] and [tex]b=3\hat{i}+4\hat{j}[/tex] is 46.