find a. b. if a =10i+4j and b = 3i+4j

Answer:
10i+4j times 3i+4j=
30i+16j
(30,16)
Step-by-step explanation:
Answer:
Option (c) is correct.
The dot product of given vectors [tex]a=10\hat{i}+4\hat{j}[/tex] and [tex]b=3\hat{i}+4\hat{j}[/tex] is 46.
Step-by-step explanation:
Given : The vectors [tex]a=10\hat{i}+4\hat{j}[/tex] and [tex]b=3\hat{i}+4\hat{j}[/tex]
We have to find the dot product of given vectors a and b
Consider the given vectors [tex]a=10\hat{i}+4\hat{j}[/tex] and [tex]b=3\hat{i}+4\hat{j}[/tex]
[tex]\mathrm{Computing\:dot\:product\:of\:two\:vectors}:\quad \left(x_1,\:\:\ldots ,\:\:x_n\right)\cdot \left(y,\:\:\ldots ,\:\:y_n\right)=\sum _{i=1}^nx_iy_i[/tex]
We have
[tex]\begin{pmatrix}10&4\end{pmatrix}\begin{pmatrix}3&4\end{pmatrix}[/tex]
[tex]=30+16=46[/tex]
Thus, The dot product of given vectors [tex]a=10\hat{i}+4\hat{j}[/tex] and [tex]b=3\hat{i}+4\hat{j}[/tex] is 46.