Answer:
Given sides 12, 16 and 20 can be the sides of right triangle.
Step-by-step explanation:
Sides of right triangle always follow the Pythagoras theorem.
i.e [tex](base)^2 + (Height)^2 = (Hypotenuse)^2[/tex]
For the given Lengths 7, 40 and 41
We need to check if
[tex]7^2 + 40^2 =41^2 \\or\\ 7^2 + 40^2 \neq41^2[/tex]
[tex]Since \\7^2 + 40^2 = 1649\\and \\41^2 = 1681[/tex]
That means, [tex]\\ 7^2 + 40^2 \neq 41^2[/tex]
hence 7,40 and 41 can not be the sides of right triangle.
Next,
Given sides 12,16 and 20.
Again follow the similar process used in the above problem.
[tex]12^2 + 16^2 =400\\And \\20^2 = 400\\Since 12^2 + 16^2 = 20^2[/tex]
Therefore given sides 12,16 and 20 can be the sides of right triangle.