Answer:
[tex]x=3[/tex]
Step-by-step explanation:
we have
[tex](3x-1)(5x+4)-15x^2=17[/tex]
applying the distributive property left side
[tex](3x-1)(5x+4)-15x^2=17\\15x^{2}+12x-5x-4-15x^{2}=17[/tex]
Combine like terms
[tex](15x^{2}-15x^{2})+(12x-5x)=17+4[/tex]
[tex](0)+(7x)=21[/tex]
[tex]7x=21[/tex]
[tex]x=21/7=3[/tex]