Which is equivalent to after it has been simplified completely? Assume n ≠ 0.
PICTURE BELOW

Answer:
Option B
Step-by-step explanation:
Given is a term under square root sign.
Inside square root is given a rational function in n as
[tex]\frac{60n^{11} }{256n^{4} }[/tex]
Simplify constant terms and n terms separately to get
=[tex]\frac{15n^7}{64} \\=\frac{n^3}{8} \sqrt{15n}[/tex]
Out of the four options option 2 matches with this.
Hence correct answer is option B.
We have been given an expression [tex]\sqrt{\frac{60n^{11}}{256n^4}}[/tex]. We are asked to simplify our given expression.
First of all, we will simplify the expression inside radical as:
[tex]\sqrt{\frac{15n^{11}}{64n^4}}[/tex]
Using exponent property [tex]\frac{a^b}{a^c}=a^{b-c}[/tex], we will get:
[tex]\sqrt{\frac{15n^{(11-4)}}{64}[/tex]
[tex]\sqrt{\frac{15n^{7}}{64}[/tex]
Now we will use exponent property [tex]\sqrt{\frac{a^b}{a^c}}=\frac{\sqrt{a^b}}{\sqrt{a^c}}[/tex].
[tex]\frac{\sqrt{15n^7}}{\sqrt{64}}[/tex]
[tex]\frac{\sqrt{15n\cdot n^6}}{\sqrt{8^2}}[/tex]
[tex]\frac{\sqrt{15n\cdot (n^3)^2}}{\sqrt{8^2}}[/tex]
Now we will bring out perfect squares from radical as:
[tex]\frac{n^3\sqrt{15n}}{8}[/tex]
Therefore, simplified form of our given expression would be [tex]\frac{n^3\sqrt{15n}}{8}[/tex] and option B is the correct choice.