Respuesta :

0.4 (2x + 1/2) = 3 [0.2x+(-2)] - 4
0.4 (2x + 1/2) = 3(0.2x-2) - 4

Then, you have to use the distributive property.
0.8x + 0.2 = 0.6x - 6 - 4
0.8x + 0.2 = 0.6x - 10
0.8x - 0.6x + 0.2 = -10
0.2x + 0.2 = -10
0.2x = -0.2 - 10
0.2x = -10.2
x = -10.2/0.2
x = -51

Does that make sense?
We just distribute the numbers out inside the parenthesis:

0.4(2x + [tex] \frac{1}{2} [/tex]) = 3[0.2x + (-2)] - 4
(0.4 × 2x) + (0.4 ×[tex] \frac{1}{2} [/tex]) = (3 × 0.2x) + (3 × -2) - 4
0.8x + 0.2 = 0.6x - 6 - 4

Join the like terms:

0.8x + 0.2 = 0.6x - 10

0.8x - 0.6x = -10 - 0.2
0.2x = -10.2

Divide by 0.2 to isolate x

[tex] \frac{0.2x}{0.2} [/tex] = [tex] -\frac{10.2}{0.2} [/tex]
0.2 and 0.2 cancels out

x = -51