mary has three lengths of cable, 3/6 yard, 1/4 yard long ,and 1/3 yard long. which two pieces together make a length of 20/24 yard?

Respuesta :

Answer:

3/9

Step-by-step explanation:


Answer:

The two pieces together make a length of  [tex]\frac{20}{24}[/tex] yard are [tex]\frac{3}{6}[/tex]  and [tex]\frac{1}{3}[/tex].

Step-by-step explanation:

Given : Mary has three lengths of cable, [tex]\frac{3}{6}[/tex] yard, [tex]\frac{1}{4}[/tex] yard long ,and [tex]\frac{1}{3}[/tex] yard long.

To find : Which two pieces together make a length of  [tex]\frac{20}{24}[/tex]  yard?

Solution :

First we convert the denominator of cable into 24.

Cable 1 - [tex]\frac{3}{6}[/tex]  multiply the numerator and denominator by 4,

[tex]\frac{3}{6}=\frac{3\times 4}{6\times 4}=\frac{12}{24}[/tex]

Cable 2 - [tex]\frac{1}{4}[/tex]  multiply the numerator and denominator by 6,

[tex]\frac{1}{4}=\frac{1\times 6}{4\times 6}=\frac{6}{24}[/tex]

Cable 3 - [tex]\frac{1}{3}[/tex]  multiply the numerator and denominator by 8,

[tex]\frac{1}{3}=\frac{1\times 8}{3\times 8}=\frac{8}{24}[/tex]

Now, we see that on adding which two numerator we get sum 20.

i.e. 12+8=20

So, we add cable 1 and cable 3

As [tex]\frac{12}{24}+\frac{8}{24}=\frac{12+8}{24}=\frac{20}{24}[/tex]

Therefore, the two pieces together make a length of  [tex]\frac{20}{24}[/tex] yard are [tex]\frac{3}{6}[/tex]  and [tex]\frac{1}{3}[/tex].