[tex]x^2+\dfrac1{x^2}=3\implies x^4+1=3x^2\implies x^4-3x^2+1=0[/tex]
By the quadratic formula,
[tex]x^2=\dfrac{3\pm\sqrt5}2\implies x^2+1=\dfrac{5\pm\sqrt5}2[/tex]
Then
[tex](x^2+1)^2=\dfrac{25\pm10\sqrt5+5}4=\dfrac{15\pm5\sqrt5}2[/tex]
[tex]\implies\dfrac{x^2}{(x^2+1)^2}=\dfrac{\frac{3\pm\sqrt5}2}{\frac{15\pm5\sqrt5}2}=\dfrac{3\pm\sqrt5}{15\pm5\sqrt5}[/tex]
Multiply numerator and denominator by the denominator's conjugate:
[tex]\dfrac{3\pm\sqrt5}{15\pm5\sqrt5}\cdot\dfrac{15\mp5\sqrt5}{15\mp5\sqrt5}=\dfrac{45\pm15\sqrt5\mp15\sqrt5-25}{15^2-(5\sqrt5)^2}=\dfrac{20}{100}=\dfrac15[/tex]