Complete the statements.
1.The solution of 3tan2x − 1 = 0 if x is in the first quadrant is °.
2. The solution of 3tan2x − 1 = 0 if x is in the second quadrant is.


1.

A.30
B.60
C.150
D. 240

2.

A.30
B.60
C.150
D.240

Respuesta :

Answer:

1. 30

2. 150

Step-by-step explanation:

[tex]3tan^2(x)-1 =0[/tex]

Lets assume tan(x) = u

[tex]3u^2(x)-1 =0[/tex]

Now we solve for 'u'

add 1 on both sides

[tex]3u^2(x) =1[/tex], divide both sides by 3

[tex]u^2 = \frac{1}{3}[/tex]

Take square root on both sides

[tex]u = +-\frac{1}{\sqrt{3} }[/tex]

We replace tan(x) for 'u'

[tex]tan(x) = +-\frac{1}{\sqrt{3} }[/tex]  

x = 30 because [tex]tan(30) =+\frac{1}{\sqrt{3} }[/tex]  in first quadrant

      x = 30      (tan is positive in first quadrant)

[tex]tan(x) =-\frac{1}{\sqrt{3} }[/tex]                                                    

  x = 150 because [tex]tan(150) =-\frac{1}{\sqrt{3} }[/tex]  in second quadrant

     tan is negative in second quadrant




Answers:

First quadrant: 30°

Second quadrant: 150°

Explanation:

I got it correct in my test :)

Ver imagen websitetechie