Respuesta :

[tex]log_{10} 3x+1=5[/tex]

[tex]3x+1=10^5[/tex]

[tex]3x+1=100000[/tex]

[tex]3x=99999[/tex]

[tex]x=333333[/tex]


Just remember that in the form of [tex]log_ab=x[/tex], you get [tex]a^x=b[/tex].


tonb

Answer:

x = 33333

Step-by-step explanation:

If you take the left and right-hand side and raise 10 to the power of it, you get:

[tex]10^{log(3x+1)} = 10^5[/tex]

Which simplifies to:

[tex]3x+1 = 100000[/tex]

Because [tex]10^{log(x)} = x[/tex]

Solving it gives:

3x = 100000 - 1 = 99999

x = 33333