Respuesta :
[tex]log_{10} 3x+1=5[/tex]
[tex]3x+1=10^5[/tex]
[tex]3x+1=100000[/tex]
[tex]3x=99999[/tex]
[tex]x=333333[/tex]
Just remember that in the form of [tex]log_ab=x[/tex], you get [tex]a^x=b[/tex].
Answer:
x = 33333
Step-by-step explanation:
If you take the left and right-hand side and raise 10 to the power of it, you get:
[tex]10^{log(3x+1)} = 10^5[/tex]
Which simplifies to:
[tex]3x+1 = 100000[/tex]
Because [tex]10^{log(x)} = x[/tex]
Solving it gives:
3x = 100000 - 1 = 99999
x = 33333