Respuesta :

Answer:

y = x^(sin(x))

y = e^(SIN(x)*LN(x))

y' = (COS(x)·LN(x) + SIN(x)/x)*e^(SIN(x)*LN(x))

y' = (COS(x)·LN(x) + SIN(x)/x)*x^(SIN(x))


Answer:

[tex]\boxed{(x^{\sin x})' =x^{\sin x}\left(\cos x \log x + \dfrac{\sin x}{x}\right)}.[/tex]

Step-by-step explanation:

First, we should rewrite the expression as:

[tex]x^{\sin x} = \exp[\log(x^{\sin x})] = \exp(\sin x \log x) = e^{\sin x \log x}.[/tex]

We now use the chain rule to get:

[tex](e^{\sin x \log x})' = e^{\sin x \log x}(\sin x \log x)' = x^{\sin x}(\sin x \log x)'.[/tex]

The derivative of the product is given by:

[tex](\sin x \log x)' = (\sin x)' \log x + \sin x (\log x)' = \cos x \log x + \dfrac{1}{x}\sin x.[/tex]

Substituiting, we get:

[tex]x^{\sin x}(\sin x \log x)' = x^{\sin x}\left(\cos x \log x + \dfrac{\sin x}{x}\right).[/tex]

So the answer is:

[tex]\boxed{(x^{\sin x})' =x^{\sin x}\left(\cos x \log x + \dfrac{\sin x}{x}\right)}.[/tex]