Respuesta :
Answer:
a) The vertices of the feasible region are (0,100) (0,700) (400,500)
The minimum profit is at (0,100) and the maximum profit is at (400,500)
Step-by-step explanation:
P=14x+22y-900 where p is profit
y > x +100 y must exceed the production of x by at least 100 units
x+2y<1400
x>0
y>0
We cannot produce negative quantities
Substitute y = x+100 into x+2y <1400
x+2(x+100) < 1400
x+2x+200 <1400
3x+200<1400
Subtract 200 from each side
3x<1200
Divide by 3
x<400
y = x+100
y = 400+100
y = 500
(400,500)
y > x +100
when x=0 y > 100
x+2y <1400
0+2y <1400
2y <1400
y <700
When x=0 y = 700
a) The vertices of the feasible region are (0,100) (0,700) (400,500)
b) Maximum and minimum profit occur at the vertices.
P=14x+22y-900
P(0,100) = 14(0) +22(100)-900 =2200-900=1300
P(0,700) = 14(0) +22(700)-900 =15400-900=14500
P(400,500) = 14(400) +22(500)-900 =5600+11000-900=15700
The minimum profit is at (0,100) and the maximum profit is at (400,500)

When profits are maximized, it means we want to get the highest possible profit from a function.
- The vertices of the feasible region are: [tex]\mathbf{(x,y) = \{(0,100), (0,700),(400,500)\}}[/tex]
- The production level that yields maximum profit is [tex]x = 400; y = 500[/tex]
- The maximum profit is #17100
Production of y must exceed x by 100 means
[tex]y > x + 100[/tex]
The production level is given as:
[tex]x + 2y < 1400[/tex]
Since x and y represent products, then:
[tex]x, y > 0[/tex]
So, we have:
[tex]P = 14x + 22y - 900[/tex] --- the objective function
Subject to
[tex]y > x + 100[/tex]
[tex]x + 2y < 1400[/tex]
[tex]x, y > 0[/tex]
See attachment for the graph of the subjects
(a) The vertices of the feasible region
From the attached image, the vertices of the feasible region are:
[tex]\mathbf{(x,y) = \{(0,100), (0,700),(400,500)\}}[/tex]
(b) The maximum profit
Recall that: [tex]x, y > 0[/tex]
This means that, we can only make use of:
[tex]\mathbf{(x,y) = \{(400,500)\}}[/tex]
So;
The production levels that yield maximum profit are:
[tex]x = 400; y = 500[/tex]
Substitute these values in [tex]P = 14x + 22y - 900[/tex], to calculate the maximum profit
[tex]P = 14x + 22y - 900[/tex]
[tex]P = 14 \times 500 + 22 \times 500 - 900[/tex]
[tex]P = 17100[/tex]
Hence, the maximum profit is: #17100
Read more about maximizing profits at:
https://brainly.com/question/11206462
