Answer:
We are given the below probability distribution table:
x P(x)
100 0.180
200 0.051
300 0.227
400 0.113
500 0.090
600 0.099
700 0.165
800 0.075
Now to find the mean, we have to use the below formula:
[tex]Mean, \mu=\sum xP(x)[/tex]
[tex]=(100 \times 0.180)+(200 \times 0.051)+(300 \times 0.227)+(400 \times 0.113)+(500 \times 0.090)+(600 \times 0.099)+(700 \times 0.165)+(800 \times 0.075)[/tex]
[tex]=18+10.2+68.1+45.2+45+59.4+115.5+60[/tex]
[tex]=421.4[/tex]
Therefore, the mean is [tex]\mu=421.4[/tex]