Respuesta :

Answer:

x=11,y=10.

Step-by-step explanation:

The diagonals of a parallelogram bisect each other.

We can form an equation in x and y using this property.

2y+2=2x

and x+9=2y.

Solving the second  equation for x ,

x=2y-9.

Substituting x value in 2y+2=2x

2y+2=2(2y-9)

Or ,2y+2=4y-18.

Adding 18 both sides:

2y+20=4y.

Subtracting 2y both sides

20=2y.

Dividing both sides by 2:

y=10.

x=2y-9

x=2(10)-9 ( substituting y value)

x=20-9=11

x=11 and y=10 will make the figure a parallelogram.

Answer:

solutions are

[tex]x=\frac{173}{7}[/tex]

[tex]y=\frac{166}{7}[/tex]

Step-by-step explanation:

We are given that

it is parallelogram

so, alternate angles must be equal

Since, it is parallelogram

so, sum of alternate  angles must be 180

we get

[tex]x+9+2y+2x+2y+2=180[/tex]

we will get equation as

[tex]x+2y+2x+2y+11=180[/tex]

[tex]3x+4y+11=180[/tex]

[tex]3x+4y=169[/tex]

we know that diagonal bisect angles

so, we get

[tex]2x=2y+2[/tex]

now, we can solve for x

[tex]x=y+1[/tex]

now, we can plug this into first equation

[tex]3(y+1)+4y=169[/tex]

now, we can solve for y

[tex]7y+3=169[/tex]

[tex]y=\frac{166}{7}[/tex]

now, we can find x

[tex]x=\frac{166}{7}+1[/tex]

[tex]x=\frac{173}{7}[/tex]

So, solutions are

[tex]x=\frac{173}{7}[/tex]

[tex]y=\frac{166}{7}[/tex]


Ver imagen rejkjavik