For what values of x and y must each figure be a parallelogram?

Answer:
x=11,y=10.
Step-by-step explanation:
The diagonals of a parallelogram bisect each other.
We can form an equation in x and y using this property.
2y+2=2x
and x+9=2y.
Solving the second equation for x ,
x=2y-9.
Substituting x value in 2y+2=2x
2y+2=2(2y-9)
Or ,2y+2=4y-18.
Adding 18 both sides:
2y+20=4y.
Subtracting 2y both sides
20=2y.
Dividing both sides by 2:
y=10.
x=2y-9
x=2(10)-9 ( substituting y value)
x=20-9=11
x=11 and y=10 will make the figure a parallelogram.
Answer:
solutions are
[tex]x=\frac{173}{7}[/tex]
[tex]y=\frac{166}{7}[/tex]
Step-by-step explanation:
We are given that
it is parallelogram
so, alternate angles must be equal
Since, it is parallelogram
so, sum of alternate angles must be 180
we get
[tex]x+9+2y+2x+2y+2=180[/tex]
we will get equation as
[tex]x+2y+2x+2y+11=180[/tex]
[tex]3x+4y+11=180[/tex]
[tex]3x+4y=169[/tex]
we know that diagonal bisect angles
so, we get
[tex]2x=2y+2[/tex]
now, we can solve for x
[tex]x=y+1[/tex]
now, we can plug this into first equation
[tex]3(y+1)+4y=169[/tex]
now, we can solve for y
[tex]7y+3=169[/tex]
[tex]y=\frac{166}{7}[/tex]
now, we can find x
[tex]x=\frac{166}{7}+1[/tex]
[tex]x=\frac{173}{7}[/tex]
So, solutions are
[tex]x=\frac{173}{7}[/tex]
[tex]y=\frac{166}{7}[/tex]