Respuesta :

Answer:

solution is

[-3,-1]

Step-by-step explanation:

we are given

[tex]|10x+20|\leq 10[/tex]

Firstly, we will find critical values

so, let's assume it is equal

[tex]|10x+20|= 10[/tex]

now, we can break absolute sign

For [tex]|10x+20|= -(10x+20)[/tex]:

[tex]-(10x+20)= 10[/tex]

we can solve for x

[tex]-10x-20= 10[/tex]

Add both sides by 20

[tex]-10x-20+20= 10+20[/tex]

[tex]-10x= 30[/tex]

Divide both sides by -10

and we get

[tex]x=-3[/tex]

For [tex]|10x+20|= (10x+20)[/tex]:

[tex](10x+20)= 10[/tex]

we can solve for x

[tex]10x+20= 10[/tex]

Subtract both sides by 20

[tex]10x+20-20= 10-20[/tex]

[tex]10x= -10[/tex]

Divide both sides by 10

and we get

[tex]x=-1[/tex]

so, critical values are

[tex]x=-3[/tex]

[tex]x=-1[/tex]

now, we can draw a number line and locate these values

and then we can check inequality on each intervals

For [tex](-\infty,-3)[/tex]:

We can select any random value from this interval and plug that in inequality

and we get

we can plug x=-5

[tex]|10\times -5+20|\leq 10[/tex]

[tex]|-50+20|\leq 10[/tex]

[tex]30\leq 10[/tex]

so, this is FALSE

For [tex][-3,-1][/tex]:

We can select any random value from this interval and plug that in inequality

and we get

we can plug x=-2

[tex]|10\times -2+20|\leq 10[/tex]

[tex]|-20+20|\leq 10[/tex]

[tex]0\leq 10[/tex]

so, this is TRUE

For [tex](-1,\infty)[/tex]:

We can select any random value from this interval and plug that in inequality

and we get

we can plug x=0

[tex]|10\times 0+20|\leq 10[/tex]

[tex]|0+20|\leq 10[/tex]

[tex]20\leq 10[/tex]

so, this is FALSE

so, solution is

[-3,-1]

Ver imagen rejkjavik