Respuesta :

Answer:

[tex](x+3i)^2-(2x-3i)^2=-3x^2+18xi[/tex]

Step-by-step explanation:

we are given

[tex](x+3i)^2-(2x-3i)^2[/tex]

we can use formula

[tex](a+b)^2=a^2+2ab+b^2[/tex]

[tex](x+3i)^2=x^2+2\times x\times 3i+(3i)^2[/tex]

[tex](x+3i)^2=x^2+6xi-9[/tex]

[tex](2x-3i)^2=(2x)^2-2\times 2x\times 3i+(3i)^2[/tex]

[tex](2x-3i)^2=4x^2-12xi-9[/tex]

now, we can plug values

[tex](x+3i)^2-(2x-3i)^2=(x^2+6xi-9)-(4x^2-12xi-9)[/tex]

now, we can simplify it

we get

[tex](x+3i)^2-(2x-3i)^2=-3x^2+18xi[/tex]