Consider the equation below.
Y=3x^2+30x+71
Use completing the square to rewrite the given equation and reveal the extreme value
Y=3(x+blank)^2+blank
The extreme value of the equation is at (blank,blank)

Respuesta :

Answer:

Equation in square form:

[tex]y=3(x+5)^2-4[/tex]

Extreme value:

[tex](h,k)=(-5,-4)[/tex]

Step-by-step explanation:

We are given

[tex]y=3x^2+30x+71[/tex]

we can complete square

[tex]y=3(x^2+10x)+71[/tex]

we can use formula

[tex]a^2+2ab+b^2=(a+b)^2[/tex]

[tex]y=3(x^2+2\times x\times 5)+71[/tex]

now, we can add and subtract 5^2

[tex]y=3(x^2+2\times x\times 5+5^2-5^2)+71[/tex]

[tex]y=3(x^2+2\times x\times 5+5^2)-3\times 5^2+71[/tex]

[tex]y=3(x+5)^2-75+71[/tex]

So, we get equation as

[tex]y=3(x+5)^2-4[/tex]

Extreme values:

we know that this parabola

and vertex of parabola always at extreme values

so, we can compare it with

[tex]y=a(x-h)^2+k[/tex]

where

vertex=(h,k)

now, we can compare and find h and k

[tex]y=3(x+5)^2-4[/tex]

we get

h=-5

k=-4

so, extreme value of this equation is

[tex](h,k)=(-5,-4)[/tex]

Answer:

Top row: reveal extreme value 5 , -4

Bottom row: extreme value -5, -4

Step-by-step explanation: