Respuesta :

Answer: Option C.


Step-by-step explanation:

1. Apply the Pythagorean Theorem to calculate AB:

[tex]AB=\sqrt{BC^{2}+AC^{2}}\\AB=\sqrt{(7.50mi)^{2}+(11.43mi)^{2}}\\AB=13.7mi[/tex]

2. Now, you can calculate the angle ∠A as following:

[tex]tan^{-1}(\alpha)=\frac{opposite}{adjacent}[/tex]

Where:

[tex]opposite=7.50\\adjacent=11.43[/tex]

Then:

[tex]tan^{-1}(A)=\frac{7.50}{11.43}[/tex]

∠[tex]A=33.3[/tex]°

3. The sum of the interior angles of a triangle is 180°. So, you can find the angle ∠B as following:

∠[tex]B=180[/tex]°-∠A-∠C

∠[tex]B=180[/tex]°-[tex]33.3[/tex]°-[tex]90[/tex]°=[tex]56.7[/tex]°

4. Therefore, the answer is the option c.