Determine the inverse of the function f(x)=|x-5| for x (greater than or equal to) 5. Then complete the inequality for the domain restrictions of the inverse function
F^-1(x)=______
The domain restriction of f^-1(x) is x (greater than or equal to)

Respuesta :

frika

Answer:

[tex]f^{-1}(x)=x+5.[/tex]

The domain of the function [tex]f^{-1}(x)[/tex] is [tex]x\ge 0[/tex] (greater than or equal to 0).

Step-by-step explanation:

If [tex]x\ge 5,[/tex] then the expression [tex]x-5[/tex] takes values that are greater or equal than 0. Thus,

[tex]f(x)=|x-5|=x-5\text{ for }x\ge 5.[/tex]

To find the inverse function you have to express x in terms of y and then change x into y and y into x:

[tex]y=x-5,\\ \\x=y+5[/tex]

and

[tex]f^{-1}(x)=x+5.[/tex]

The domain of the function [tex]f(x)[/tex] is [tex]x\ge 5[/tex] and the range of the function [tex]f(x)[/tex] is [tex]y\ge 0.[/tex] The domain of the inverse function [tex]f^{-1}(x)[/tex] is the range of the function [tex]f(x),[/tex] hence the domain of the function [tex]f^{-1}(x)[/tex] is [tex]x\ge 0.[/tex]