Respuesta :

Answer:

[tex]\frac{\frac{4ab}{3b^4} }{\frac{8a}{15b} }=\frac{5}{2b^2}[/tex]

Step-by-step explanation:

we are given

[tex]\frac{\frac{4ab}{3b^4} }{\frac{8a}{15b} }[/tex]

we have to simplify it

So, firstly, we will use property of ratio

[tex]\frac{\frac{x}{y} }{\frac{z}{w} }=\frac{x\times w}{y\times z}[/tex]

so, we can write our expression as

[tex]\frac{\frac{4ab}{3b^4} }{\frac{8a}{15b} }=\frac{4ab\times 15b}{3b^4\times 8a}[/tex]

now, we can cancel common terms

[tex]\frac{\frac{4ab}{3b^4} }{\frac{8a}{15b} }=\frac{1\times 5}{b^2\times 2}[/tex]

we can simplify it further

[tex]\frac{\frac{4ab}{3b^4} }{\frac{8a}{15b} }=\frac{5}{2b^2}[/tex]

so, we get answer as

[tex]\frac{\frac{4ab}{3b^4} }{\frac{8a}{15b} }=\frac{5}{2b^2}[/tex]


Answer: [tex]\frac{5}{2b^{2}}[/tex]


Step-by-step explanation:

1. You must divide the given expression as following:

[tex]\frac{\frac{4ab}{3b^{4}}}{\frac{8a}{15b}}=\frac{(4ab)(15b)}{(3b^{4})(8a)}=\frac{60ab^{2}}{24ab^{4}}[/tex]

2. You must apply the exponents properties. The quotient property of exponents says that you must divide powers with the same base, you must subtract the exponents. Based on this, you have that the result is:

[tex]\frac{5}{2b^{2}}[/tex]