Answer:
The simplified expression is [tex]\frac{15a}{x^3}[/tex]
Step-by-step explanation:
The given expression is
[tex]\frac{\frac{5a^3x}{3x^5} }{\frac{a^2}{9x}}[/tex]
We change the middle bar to a normal division sign to obtain,
[tex]=\frac{5a^3x}{3x^5}\div \frac{a^2}{9x}[/tex]
We multiply by the reciprocal of the second fraction to obtain,
[tex]=\frac{5a^3x}{3x^5}\times \frac{9x}{a^2}[/tex]
We cancel out common factors to get,
[tex]=\frac{5a}{x^3}\times \frac{3}{1}[/tex]
This simplifies to,
[tex]=\frac{15a}{x^3}[/tex]