Respuesta :

Answer: [tex]\frac{3}{2b^{3}}[/tex]

Step-by-step explanation:

1. You have:

[tex]\frac{\frac{9b}{4a}}{\frac{3b^{5}}{2ab}}=\frac{(9b)(2ab)}{(4a)(3b^{5})}=\frac{18ab^{2}}{12ab^{5}}[/tex]

2. You must apply the exponents properties. The quotient property of exponents says that if you need to divide powers with the same base, you must subtract the exponents. Based on this, you have that the result is:

[tex]\frac{3}{2b^{3}}[/tex]

Answer:

The simplified expression is [tex]\frac{3}{2b^3}[/tex]

Step-by-step explanation:


The given expression is

[tex]\frac{\frac{9b}{4a} }{\frac{3b^5}{2ab} }[/tex]

We change the middle bar to a normal division sign to obtain,

[tex]=\frac{9b}{4a} \div \frac{3b^5}{2ab}[/tex]

We multiply by the reciprocal of the second fraction,

[tex]=\frac{9b}{4a} \times \frac{2ab}{3b^5}[/tex]

We cancel out the common factors to get,

[tex]=\frac{3}{2b^3}[/tex]