Respuesta :

Answer:

[tex]x=\p \pi n ,x=\frac{3\pi}{2} \pm 2\pi n[/tex]

Step-by-step explanation:

We want to solve the equation,

[tex]sinx(sin x+1)=0[/tex]

By the zero product property of multiplication,

[tex]sinx=0\:or\:(sin x+1)=0[/tex]

[tex]\Rightarrow sinx=0\:or\:sin x=-1[/tex]

If [tex]sinx=0[/tex], then, [tex]x=\pi[/tex]

The general solution is

[tex]x=\pm \pi n[/tex]

For [tex]sinx=-1[/tex], it means [tex]x[/tex] is either in the third quadrant or fourth quadrant.

So we first solve for,

[tex]sinx=1[/tex]

This implies that,

[tex]x=\frac{\pi}{2}[/tex]

In the third quadrant,

[tex]x=\pi +\frac{\pi}{2}[/tex]

[tex]x=\frac{3\pi}{2}[/tex]

In the fourth quadrant,

[tex]x=2\pi -\frac{\pi}{2}[/tex]

[tex]x=\frac{3\pi}{2}[/tex]

This is a repeated solution.

So the general solution is

If [tex]sin x=-1[/tex], then [tex]x=\frac{3\pi}{2}\pm 2\pi n[/tex]

Putting the two solutions together gives

[tex]x=\pm \pi n ,x=\frac{3\pi}{2} \pm 2\pi n[/tex], where n is an integer

The correct answer is C.