Find the range of y = 3/2 cos 4x - 1

I tried it and I got an answer of -1/2 <= y <= 3/2!! But this is not one of the choices!


Choices:

A) -1/2 <= y <= 1/2

B) -2 1/2 <= y <= 1/2

C) -3/2 <= y <=3/2

D) -5 <= y <=3

Respuesta :

Answer:

B. [tex]-2\frac{1}{2} \leq y \leq \frac{1}{2}[/tex]

Step-by-step explanation:


The given trigonometric function is

[tex]f(x)=\frac{3}{2}cos4x-1[/tex].


The amplitude of this function is [tex]\frac{3}{2}[/tex], so under normal circumstances the range is supposed to be

[tex]-\frac{3}{2} \leq y \leq \frac{3}{2}[/tex]

But the [tex]-1[/tex] is a downward vertical shift.

Therefore the normal boundaries  of the range will shift down one unit to give the range of the transformed function.


We subtract 1 from the lower boundary to get [tex]-\frac{3}{2}-1=-2\frac{1}{2}[/tex]


We also subtract 1 from the upper boundary to get [tex]-frac{3}{2}-1=\frac{1}{2}[/tex]


Hence the range is


[tex]-2\frac{1}{2} \leq y \leq \frac{1}{2}[/tex]

Also see graph

Ver imagen kudzordzifrancis