What is the quotient? n+3/2n-6 divided by n+3/3n-9

First some rewriting:
[tex]\dfrac{n+3}{2n-6}\div\dfrac{n+3}{3n-9}=\dfrac{n+3}{2(n-3)}\div\dfrac{n+3}{3(n-3)}=\dfrac{\frac{n+3}{2(n-3)}}{\frac{n+3}{3(n-3)}}[/tex]
We see that the numerators of both fractions [tex](n+3)[/tex] and a term in the denominators [tex](n-3)[/tex] will cancel:
[tex]\dfrac{n+3}{2(n-3)}\div\dfrac{n+3}{3(n-3)}=\dfrac{\frac12}{\frac13}[/tex]
Then
[tex]\dfrac{\frac12}{\frac13}=\dfrac12\cdot\dfrac31=\dfrac32[/tex]
Answer:
[tex]\frac{3}{2}[/tex]
Step-by-step explanation:
[tex]\frac{n+3}{2n-6} divide \frac{n+3}{2n-9}[/tex]
To remove the division symbol, take reciprocal of second fraction and put multiplication symbol inbetween
[tex]\frac{n+3}{2n-6} divide \frac{n+3}{2n-9}[/tex]
[tex]\frac{n+3}{2n-6} \cdot \frac{3n-9}{n+3}[/tex]
Now we factor 2n-6 and 3n-9
[tex]2n-6=2(n-3)[/tex]
[tex]3n-9=3(n-3)[/tex]
Replace the factors
[tex]\frac{n+3}{2(n-3)} \cdot \frac{3(n-3)}{n+3}[/tex]
cancel out n+3 and n-3 at the numerator and denominator
[tex]\frac{3}{2}[/tex]