Respuesta :
Answer:
[tex]27^{\frac{1}{5} }=\sqrt[5]{3^3}[/tex]
Step-by-step explanation:
we are given
[tex]27^{\frac{1}{5} }[/tex]
we can use rule to change exponent into radical
[tex]\sqrt[n]{a} =a^{\frac{1}{n} }[/tex]
so, we can write as
[tex]27^{\frac{1}{5}}=(3\times 3\times 3)^{\frac{1}{5}}[/tex]
[tex]27^{\frac{1}{5}}=(3^3)^{\frac{1}{5}}[/tex]
now, we can use rule
and we can write our term as
[tex]27^{\frac{1}{5} }=\sqrt[5]{3^3}[/tex]
Answer:
[tex]\sqrt[5]{3^3}[/tex]
Step-by-step explanation:
Given: [tex]27^{\frac{1}{5} }[/tex]
This is the fifth root. We need to write 5 in the index of the radical sign.
[tex]\sqrt[n]{x} = x^\frac{1}{n}[/tex]
Here n is the index of the radical.
[tex]27^{\frac{1}{5} } = \sqrt[5]{27}[/tex]
We can write 27 = 3*3*3 = [tex]3^{3}[/tex]
[tex]\sqrt[5]{27} = \sqrt[5]{3^3}[/tex]
Therefore, the answer is [tex]27^{\frac{1}{5} } = \sqrt[5]{3^3}[/tex]