What is the radical expression that is equivalent to the expression 27 1/5? Enter your answer as a radical. For example, if your answer is 25^1/4, enter your answer like this: cuberoot(14) CAN SOMEONE ANSWER FAST PLZ

Respuesta :

Answer:

[tex]27^{\frac{1}{5} }=\sqrt[5]{3^3}[/tex]

Step-by-step explanation:

we are given

[tex]27^{\frac{1}{5} }[/tex]

we can use rule to change exponent into radical

[tex]\sqrt[n]{a} =a^{\frac{1}{n} }[/tex]

so, we can write as

[tex]27^{\frac{1}{5}}=(3\times 3\times 3)^{\frac{1}{5}}[/tex]

[tex]27^{\frac{1}{5}}=(3^3)^{\frac{1}{5}}[/tex]

now, we can use rule

and we can write our term as

[tex]27^{\frac{1}{5} }=\sqrt[5]{3^3}[/tex]

Answer:

[tex]\sqrt[5]{3^3}[/tex]

Step-by-step explanation:

Given: [tex]27^{\frac{1}{5} }[/tex]

This is the fifth root. We need to write 5 in the index of the radical sign.

[tex]\sqrt[n]{x} = x^\frac{1}{n}[/tex]

Here n is the index of the radical.

[tex]27^{\frac{1}{5} } = \sqrt[5]{27}[/tex]

We can write 27 = 3*3*3 = [tex]3^{3}[/tex]

[tex]\sqrt[5]{27} = \sqrt[5]{3^3}[/tex]

Therefore, the answer is [tex]27^{\frac{1}{5} } = \sqrt[5]{3^3}[/tex]