Respuesta :

Answer:

(a)

[tex]25\times 24\times 23\times 22=\frac{25!}{21!}[/tex]

(b)

[tex]25\times 24\times 23\times 22=P(25,4)[/tex]

Step-by-step explanation:

Quotient of factorials:

we are given

[tex]25\times 24\times 23\times 22[/tex]

we can multiply top and bottom term by 21!

[tex]25\times 24\times 23\times 22=\frac{25\times 24\times 23\times 22\times 21!}{21!}[/tex]

we can write as

[tex]25\times 24\times 23\times 22=\frac{25!}{21!}[/tex]

As a permutation:

we know permutation formula

[tex]P(n,r)=\frac{n!}{(n-r)!}[/tex]

now, we can compare and find 'n' and 'r'

[tex]n=25[/tex]

[tex]n-r=21[/tex]

we can plug back n=25

[tex]25-r=21[/tex]

[tex]r=4[/tex]

so, we can write

[tex]25\times 24\times 23\times 22=P(25,4)[/tex]