Respuesta :
Answer:
[tex]Period=\frac{\pi}{5}[/tex]
Step-by-step explanation:
we are given function as
[tex]f(x)=cos(10x)[/tex]
now, we can use formula
If [tex]f(x)=Acos(Bx+C)+D[/tex]
[tex]Period=\frac{2\pi}{B}[/tex]
now, we can compare and find B
we get
B=10
now, we can find period
[tex]Period=\frac{2\pi}{10}[/tex]
so, we get
[tex]Period=\frac{\pi}{5}[/tex]
Answer:
period of the function is [tex]\frac{\pi }{5}[/tex]
Step-by-step explanation:
The given function is f (x) = cos 10x
Since cosine function is represented by
f (x) = a cos b x
where a = amplitude of cosine function and period = [tex]\frac{2\pi }{b}[/tex]
Now we compare function given with the standard form of cosine function.
we find b = 10
then period = [tex]\frac{2\pi }{b}[/tex]
= [tex]\frac{2\pi }{10}[/tex]
= [tex]\frac{\pi }{5}[/tex]
Therefore, period of the function is [tex]\frac{\pi }{5}[/tex]