Respuesta :

Answer:

[tex]Period=\frac{\pi}{5}[/tex]

Step-by-step explanation:

we are given function as

[tex]f(x)=cos(10x)[/tex]

now, we can use formula

If [tex]f(x)=Acos(Bx+C)+D[/tex]

[tex]Period=\frac{2\pi}{B}[/tex]

now, we can compare and find B

we get

B=10

now, we can find period

[tex]Period=\frac{2\pi}{10}[/tex]

so, we get

[tex]Period=\frac{\pi}{5}[/tex]

Answer:

period of the function is [tex]\frac{\pi }{5}[/tex]

Step-by-step explanation:

The given function is f (x) = cos 10x

Since cosine function is represented by

f (x) = a cos b x

where a = amplitude of cosine function and period = [tex]\frac{2\pi }{b}[/tex]

Now we compare function given with the standard form of cosine function.

we find b = 10

then period = [tex]\frac{2\pi }{b}[/tex]

                   = [tex]\frac{2\pi }{10}[/tex]

                   = [tex]\frac{\pi }{5}[/tex]

Therefore, period of the function is [tex]\frac{\pi }{5}[/tex]