Respuesta :

gmany

The point-slope form:

[tex]y-y_1=m(x-x_1)[/tex]

The formula of a slope:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

We have the points (-10, -7) and (-5, -9). Substitute:

[tex]m=\dfrac{-9-(-7)}{-5-(-10)}=\dfrac{-9+7}{-5+10}=\dfrac{-2}{5}=-\dfrac{2}{5}[/tex]

[tex]y-(-7)=-\dfrac{2}{5}(x-(-10))[/tex]

[tex]\boxed{y+7=-\dfrac{2}{5}(x+10)}[/tex]    point-slope form

[tex]y+7=-\dfrac{2}{5}(x+10)[/tex]      use distributive property

[tex]y+7=-\dfrac{2}{5}x-4[/tex]     subtract 7 from both sides

[tex]\boxed{y=-\dfrac{2}{5}x-11}[/tex]      slope-intercept form

[tex]y=-\dfrac{2}{5}x-11[/tex]           multiply both sides by 5

[tex]5y=-2x-55[/tex]      add 2x to both sides

[tex]\boxed{2x+5y=-55}[/tex]      standard form