Answer:
G(6,2)
Step-by-step explanation:
If point [tex]F(x_F,y_F)[/tex] is the midpoint of the segment GJ, where [tex]G(x_G,y_G)[/tex] and [tex]J(x_J,y_J)[/tex], then
[tex]x_F=\dfrac{x_G+x_J}{2},\\ \\y_F=\dfrac{y_G+y_J}{2}.[/tex]
In your case,
[tex]F(2,5),\ J(-2,8),[/tex]
therefore,
[tex]2=\dfrac{x_G+(-2)}{2},\\ \\5=\dfrac{y_G+8}{2}.[/tex]
Thus,
[tex]x_G-2=4\Rightarrow x_G=6,\\ \\y_G+8=10\Rightarrow y_G=2.[/tex]