Respuesta :

Answer:

A

Step-by-step explanation:


[tex]\frac{sec t + csc t}{1 + cot t} = sec t \\\\\ \frac{\frac{1}{cos t} + \frac{1}{sin t}}{1 + \frac{cos t}{sin t}} = \frac{1}{cos t} \\\\\ \frac{1}{cos t} + \frac{1}{sin t} = \frac{1}{cos t}(1 + \frac{cos t}{sin t}) \\\\\ \frac{1}{cos t} + \frac{1}{sin t} = \frac{1}{cos t} + \frac{1}{sin t}[/tex]


I hope I helped you.

Answer:

The correct answer is:

                     Option: A

       A.    [tex]\dfrac{\sec t+\csc t}{1+\cot t}=\sec t[/tex]

Step-by-step explanation:

A)

[tex]\dfrac{\sec t+\csc t}{1+\cot t}=\sec t\\\\\\i.e.\\\\\\\dfrac{\dfrac{1}{\cos t}+\dfrac{1}{\sin t}}{1+\dfrac{\cos t}{\sin t}}=\sec t\\\\\\\dfrac{\dfrac{\cos t+\sin t}{\cos t\sin t}}{\dfrac{\sin t+\cos t}{\sin t}}=\sec t\\\\\\\dfrac{\sin t}{\sin t\cos t}=\sec t\\\\\\\dfrac{1}{\cos t}=\sec t\\\\\\\\\sec t=\sec t[/tex]

B)

[tex]\dfrac{\sec t-\csc t}{1-\cot t}=\cos t\\\\\\i.e.\\\\\\\dfrac{\dfrac{1}{\cos t}-\dfrac{1}{\sin t}}{1-\dfrac{\cos t}{\sin t}}=\cos t\\\\\\\dfrac{\dfrac{\sin t-\cos t}{\cos t\sin t}}{\dfrac{\cos t-\sin t}{\sin t}}=\cos t\\\\\\\dfrac{-\sin t}{\sin t\cos t}=\cos t\\\\\\\dfrac{-1}{\cos t}=\cos t\\\\\\\\\-sec t=\cos t[/tex]

This is a false relation.

Since, we know that:

[tex]\sec t=\dfrac{1}{\cos t}[/tex]

C)

[tex]\dfrac{\cos t-\sin t}{1-\cot t}=\cos t[/tex]

i.e.

[tex]\dfrac{\cos t-\sin t}{1-\dfrac{\cos t}{\sin t}}=\cos t\\\\\\\dfrac{\cos t-\sin t}{\dfrac{\sin t-\cos t}{\sin t}}=\cos t\\\\\\-\dfrac{1}{\sin t}=\cos t[/tex]

which is again a wrong identity

D)

[tex]\dfrac{\sin (t+2\pi)}{\cos (\pi+t)}=\cos t[/tex]

We know that:

[tex]\sin (2\pi+t)=\sin t\\\\and\\\\\cos (\pi+t)=-\cos t[/tex]

i.e.

[tex]\dfrac{\sin t}{-\cos t}=\cos t[/tex]

i.e.

[tex]-\csc t=\cos t[/tex]

which is again a wrong identity.