Respuesta :

Answer:

option-B

Step-by-step explanation:

we are given

[tex]-5x^3(3x^2+3x-1)[/tex]

we can use distributive property

Distributive property:

[tex]a(x+y+z)=a\cdot x+a\cdot y+a\cdot z[/tex]

now, we can apply this formula

and we get

[tex]-5x^3(3x^2+3x-1)=-5x^3\cdot 3x^2-5x^3\cdot 3x-5x^3\cdot -1[/tex]

we can see that there are two negative signs in last term

so, we can write as

[tex]-5x^3(3x^2+3x-1)=-5x^3\cdot 3x^2-5x^3\cdot 3x+5x^3\cdot 1[/tex]

so,

option-B