Respuesta :

Answer:(5-7)²


Step-by-step explanation:  as h(x)=x-7 and g(x)=x²

                                     so,     goh(x)=g(h(x))

                                                         =g(x-7)

                                                          =(x-7)²

                                  hence, goh(5)=(5-7)²


For this case, we must perform a composition of functions.

Let two functions, f(x) and g(x). To find[tex](f_ {0} g)[/tex] we calculate [tex]f (g (x)[/tex], that is, replace g (x) in f (x).

So, if we have:

[tex]h (x) = x-7\\g (x) = x ^ 2[/tex]

And we want to find [tex](g_ {0} h) (x)[/tex]. We make:

[tex]g (h (x)) = (x-7) ^ 2[/tex]

if we want the composite function evaluated at 5, we substitute [tex]x = 5[/tex]

[tex]g (h (5)) = (5-7) ^ 2[/tex]

Answer:

[tex]g (h (5)) = (5-7) ^ 2[/tex]

Option A