Respuesta :

Answer:

[tex]2x^3\sqrt[3]{4}[/tex]

Step-by-step explanation:

We have been given an expression [tex]\sqrt[3]{4x^2} *\sqrt[3]{8x^7}[/tex] and we are asked to find the product of our given expression.

Using exponent rule of power to powers [tex](a^{mn}=(a^m)^n)[/tex] we can write [tex]8x^7[/tex] as [tex](2x^2)^3x[/tex] and [tex]4x^2=(2x)^2[/tex].

Upon substituting these values in our expression we will get,

[tex]\sqrt[3]{4x^2} *\sqrt[3]{(2x^2)^3x}[/tex]

Using exponent rule [tex]\sqrt[n]{x^m} =x^{\frac{m}{n}}[/tex] we will get,

[tex]\sqrt[3]{4x^2} *2x^2\sqrt[3]{x}[/tex]

Multiplying [tex]\sqrt[3]{x}[/tex] by [tex]\sqrt[3]{4x^2}[/tex] we will get,

[tex]\sqrt[3]{4x^3} *2x^2[/tex]

Using exponent rule [tex]\sqrt[n]{x^m} =x^{\frac{m}{n}}[/tex] we will get,

[tex]x\sqrt[3]{4}*2x^2[/tex]

[tex]x*2x^2\sqrt[3]{4}[/tex]

[tex]2x^3\sqrt[3]{4}[/tex]

Therefore, the simplest form of the product of our given expression will be [tex]2x^3\sqrt[3]{4}[/tex].