Respuesta :

Answer:

           [tex]f^{-1} (x)  =[/tex] [tex]\frac{1}{5}(x+3)[/tex]

Step-by-step explanation:

In order to find the inverse of a function  we need to follow  the given step

We shall do step by step to find the inverse of given function

Step(1) : we write f(x) =y

therefore here y =5x-3

Step(2)  Interchanging x and y

                 x =5y-3

                     or

                   5y-3 = x

Step :solving the obtained equation for y

                5y = x+3

                 y = [tex]\frac{1}{5}(x+3)[/tex]

                [tex]f^{-1} (x)  =[/tex] [tex]\frac{1}{5}(x+3)[/tex]

Answer:

f⁻¹(x) = x+3 / 5

Step-by-step explanation:

We have given a function.

f(x) = 5x-3

We have to find the inverse of given function.

Step 1. Put y = f(x) in given function

y = 5x-3

Step 2. Add 3 to both sides of above equation

y+3 = 5x-3+3

y+3 = 5x

Step 3.Divide by 5 to both sides of above equation

y+3 / 5 = 5x / 5

y+3 / 5 = x

Step 4. Swap sides

x = y+3 / 5

Step 5.Put x = f⁻¹(y) in above equation

f⁻¹(y) = y+3 / 5

Step 6. Replace x with y

f⁻¹(x) = x+3 / 5 is the inverse of f(x) = 5x-3.