Function f is a linear function with an initial value of 17 and a rate of change of –3. Some values for the linear function g are shown in the table below. By how much does g exceed f when x = 5?

Answer:
g(x) exceed f(x) by [tex]10[/tex] when [tex]x=5[/tex]
Step-by-step explanation:
step 1
Find the equation of function f(x)
we know that
The initial value is the y-intercept of the linear function (value of y when the value of x is equal to zero)
so
[tex]b=17[/tex]
The rate of change is equal to the slope
so
[tex]m=-3[/tex]
therefore
[tex]f(x)=-3x+17[/tex]
step 2
Find the equation of function g(x)
Let
[tex]A(0,-8),B(2,0)[/tex]
Find the slope
[tex]m=(0+8)/(2-0)=4[/tex]
[tex]b=-8[/tex] ----> point A
therefore
[tex]g(x)=4x-8[/tex]
step 3
Find the value of f(x) and g(x) for [tex]x=5[/tex]
[tex]f(5)=-3(5)+17=2[/tex]
[tex]g(5)=4(5)-8=12[/tex]
Find the difference
[tex]g(5)-f(5)=12-2=10[/tex]