Respuesta :
Answer:
908 g Fe₂O₃
General Formulas and Concepts:
Chemistry - Gas Laws
Combined Gas Law: PV = nRT
- P is pressure
- V is volume (in liters)
- n is number of moles
- R is a constant - [tex]0.0821 \frac{L \cdot atm}{mol \cdot K}[/tex]
- T is temperature (in Kelvins)
Chemistry - Stoichiometry
- Reading a Periodic Table
- Using Dimensional Analysis
Explanation:
Step 1: Define
[RxN] 2Fe₂O₃ (s) + 3C (s) → 4Fe (s) + 3CO₂ (g)
[Given] 100 L CO₂ at 300 K and 2.10 atm
Step 2: Find Moles
Apply the Combined Gas Law and solve.
[tex](2.10 \ atm)(100 \ L) = n(0.0821 \frac{L \cdot atm}{mol \cdot K} )(300 \ K)\\\frac{(2.10 \ atm)(100 \ L)}{(0.0821 \frac{L \cdot atm}{mol \cdot K} )(300 \ K)} = n\\n = 8.52619 \ mol \ CO_2[/tex]
Step 3: Identify Conversions
[RxN] 3 mol CO₂ = 2 mol Fe₂O₃
Molar Mass of Fe - 55.85 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of Fe₂O₃ - 2(55.85) + 3(16.00) = 159.7 g/mol
Step 4: Stoichiometry
[tex]8.52619 \ mol \ CO_2(\frac{2 \ mol \ Fe_2O_3}{3 \ mol \ CO_2} )(\frac{159.7 \ g \ Fe_2O_3}{1 \ mol \ Fe_2O_3} )[/tex] = 907.755 g Fe₂O₃
Step 5: Check
We are given 3 sig figs. Follow sig fig rules and round.
907.755 g Fe₂O₃ ≈ 908 g Fe₂O₃