Respuesta :

Answer:

Option B is the correct answer

Step-by-step explanation:

The exact expression is:

[tex]\frac{\frac{1}{4n}-\frac{1}{2}}{\frac{n}{6}-\frac{1}{24n} }[/tex]

Taking LCM in numerator and denominator can simplify the expression. Further simplifying the expression can give us the final result, as shown below:

[tex]\frac{\frac{1-2n}{4n} }{\frac{4n^{2}-1 }{24n}} \\\\=\frac{1-2n}{4n}\times\frac{24n}{4n^{2}-1 }\\\\=\frac{1-2n}{4n}\times\frac{24n}{(2n+1)(2n-1)}\\\\ =-\frac{2n-1}{4n}\times\frac{24n}{(2n+1)(2n-1)}\\\\ =-\frac{6}{2n+1}[/tex]


Answer:

Option B. is the right answer.

Step-by-step explanation:

We have to simplify the given fraction [tex]\frac{\frac{1}{4n}-\frac{1}{2}}{\frac{n}{6}-\frac{1}{24n}}[/tex]

Now we will solve numerator first

[tex]{\frac{1}{4n}-\frac{1}{2}}[/tex] [tex]=\frac{(1-2n)}{4n}[/tex]

Then we will solve denominator

[tex]=\frac{n}{6}-\frac{1}{24n}[/tex][tex]=\frac{4n^{2}-1}{24n}[/tex]

[tex]=-\frac{-4n^{2}+1}{24n}[/tex][tex]=-\frac{(1-2n)(1+2n)}{24n}[/tex]

Now we put numerator and denominator in the form of a fraction.

[tex]-\frac{(1-2n)}{4n}\div \frac{(1-2n)(1+2n)}{24n}[/tex]

[tex]=-\frac{(1-2n)}{4n}\times \frac{24n}{(1-2n)(1+2n)}[/tex]

[tex]=-\frac{6}{2n+1}[/tex]

Therefore option B is the right answer.