Respuesta :

Answer:

[tex]x=\sqrt{41}\ units[/tex]

Step-by-step explanation:

see the attached figure with letters to better understand the problem

we know that

In a right triangle the Pythagoras theorem formula is equal to

[tex]c^{2} =a^{2} +b^{2}[/tex]

where

c is the hypotenuse

a,b are the legs of triangle

step 1

In the right triangle ABC find BC

[tex]AB^{2} =AC^{2} +BC^{2}[/tex]

substitute the values

[tex]52^{2} =48^{2} +BC^{2}[/tex]

[tex]BC^{2}=52^{2}-48^{2}[/tex]

[tex]BC^{2}=400[/tex]

[tex]BC=20\ units[/tex]

step 2

In the right triangle CBF find CF

[tex]BC^{2} =BF^{2} +CF^{2}[/tex]

substitute the values

[tex]20^{2} =12^{2} +CF^{2}[/tex]

[tex]CF^{2}=20^{2}-12^{2}[/tex]

[tex]CF^{2}=256[/tex]

[tex]CF=16\ units[/tex]

step 3

In the right triangle DEF find EF

[tex]DF^{2} =ED^{2} +EF^{2}[/tex]

substitute the values

[tex]13^{2} =5^{2} +EF^{2}[/tex]

[tex]EF^{2}=13^{2}-5^{2}[/tex]

[tex]EF^{2}=144[/tex]

[tex]EF=12\ units[/tex]

step 6

Find the measure CE

[tex]CE=CF-EF[/tex]

substitute

[tex]CE=16-12=4\ units[/tex]

step 7

In the right triangle CDE find the value of x

[tex]x^{2} =CE^{2} +ED^{2}[/tex]

substitute the values

[tex]x^{2} =4^{2} +5^{2}[/tex]

[tex]x^{2}=41[/tex]

[tex]x=\sqrt{41}\ units[/tex]

Ver imagen calculista