For [tex]f(x) = 4x + 1[/tex] and [tex]g(x) = x^{2} -5[/tex], find [tex](f - g)(x)[/tex]

A. [tex]-x^{2} + 4x + 6[/tex]
B. [tex]4x^{2} - 19[/tex]
C. [tex]-x^{2} +4x - 4[/tex]
D. [tex]x^{2} - 4x -6[/tex]

Respuesta :

Answer:

[tex]-x^2+4x+6[/tex]

Step-by-step explanation:

f(x)= 4x+1

g(x)= x^2-5

We need to find (f-g)(x)

[tex](f-g)(x)= f(x) - g(x)[/tex]

We need to plug in f(x) and g(x)

[tex](f-g)(x)= f(x) - g(x)=4x+1 -(x^2-5)[/tex]

Now simplify it

[tex]f(x) - g(x)=4x+1 -x^2+5[/tex]

Combine like terms

[tex]f(x) - g(x)=4x -x^2+6[/tex]

Final answer is

[tex]-x^2+4x+6[/tex]

Answer:

Choice A is correct anser.

Step-by-step explanation:

From question statement,we observe that

Two functions are given. We have to find their difference.

f(x) = 4x+1 and g(x) = x²-5

(f-g)(x) = ?

(f-g)(x) = f(x) - g(x)

(f-g)(x) = (4x+1)-(x²-5)

(f-g)(x) = 4x+1-x²+5

Adding like terms,we get

(f-g)(x)  = 4x-x²+6

(f-g)(x)  = -x²+4x+6 which is the solution.